Preliminary Hydrogeological Investigation

1050 Markham Road Toronto, ON M1H 2Y7

Prepared For:

CAPREIT

DS CONSULTANTS LTD.

6221 Highway 7, Unit 16 Vaughan, Ontario, L4H 0K8 Telephone: (905) 264-9393 <u>www.dsconsultants.ca</u>

Project No.: 24-014-100 **Date:** March 15th, 2024

23-470-100

March 15th, 2024

CAPREIT 11 Church Street Toronto, Ontario M5E 1W1

Via email: <u>t.bhatt@capreit.net</u>

RE: Preliminary Hydrogeological Investigation – 1050 Markham Road, Toronto, ON

DS Consultants Limited (DS) was retained by CAPREIT to complete a preliminary hydrogeological investigation for the proposed development at 1050 Markham Road, Toronto, ON (Site). The Site is currently occupied by a 19-storey residential apartment building and includes one (1) level of basement and one (1) level of underground parking located west of the building and beneath the current exterior asphalt surface parking area. It is DS' understanding that an infill development is being considered south of the existing building on the property with a high-rise building with two (2) to four (4) levels of underground parking (P2 to P4). Detailed design was not available at the time of the current investigation. Therefore, P2 to P4 is estimated to extend approximately 7 to 13 mbgs. This investigation is based on five (5) monitoring wells installed by DS in February 2024 in support of the hydrogeological, geotechnical and environmental investigations at the Site. The scope of work conducted at the Site is only for a preliminary investigation. Additional investigative work will be required at the detailed design stage.

This hydrogeological investigation includes an overview of the existing geological and hydrogeological conditions at the Site and the surrounding area. This investigation also provides an estimation of construction dewatering and impact assessment associated with the potential dewatering activities. The findings from this investigation will determine the dewatering and discharge permitting requirements from the Ministry of the Environment, Conservation and Parks (MECP) and the City of Toronto. Based on the results of this investigation, the following conclusions and recommendations are presented:

- Based on the review of the MECP WWRs, there are thirty-one (31) water wells within a 500 m radius of the Site. All wells were noted as monitoring/test holes (MO/TH), not in use (NU), or had unknown status. Groundwater level was reported to range from 2.7 to 6.4 mbgs within the study area. The study area is fully serviced by municipal water and therefore, no groundwater users are expected in the area.
- 2. In February 2024, test drilling of five (5) boreholes was carried out by a licensed water well contractor as part of the subsurface investigation at the Site. The boreholes were advanced to 12.3 to 20.3 mbgs (135.7 to 148.7 masl). All boreholes were equipped with a monitoring well, with a 3.05 m screens installed to depths ranging from 7.6 to 15.2 mbgs (145.7 to 152.6 masl). The monitoring wells were developed before any use to allow for groundwater level monitoring, hydraulic conductivity testing, and to assess groundwater quality.

- 3. The stratigraphy at the Site generally consists of till (clayey silt, sandy silt to silty sand) with underlying occasional silty sand deposits. The overburden extended to the maximum explored depth of the boreholes. Shale bedrock was not encountered and is not anticipated to influence current groundwater conditions at the Site.
- 4. The groundwater levels were measured on March 6th by DS. The groundwater levels ranged from 3.5 to 4.5 mbgs (156.4 to 156.7 masl) in shallow wells and 8.0 to 11.8 mbgs (149.4 to 150.4 masl) in deep wells. The groundwater flow direction in the study area was inferred south towards West Highland Creek located approximately 2 km from the Site. A bi-weekly groundwater level monitoring program has been implemented to comply with the City of Toronto Terms of Reference (ToR) for discharge permitting.
- 5. Five (5) Single Well Response Test (slug test) were completed by DS in March 2024, to estimate hydraulic conductivity (k) for the representative geological units in which the well was screened. The resulting hydraulic conductivity values ranged from 1.8×10^{-7} to 2.1×10^{-9} m/s and is indicative of low to medium permeable soils.
- 6. One (1) unfiltered groundwater sample was collected from monitoring well BH24-3 on March 5th, 2024, and submitted to SGS Laboratories in Lakefield, Ontario. SGS is certified by the Canadian Association of Laboratory Accreditation Inc. (CALA) and Canadian Standard Association (CSA). The analytical results were compared to the parameter limits listed under the City of Toronto sanitary and storm sewer by-law 100_2016. The reported analytical results indicate that only Total Suspended Solids (TSS) and total manganese exceeded storm sewer criteria. No exceedances were reported when compared to sanitary sewer discharge criteria.
- 7. Based on the current groundwater table at the Site, excavation activities are anticipated to occur below the groundwater table for potential P2 to P4. The total estimated water discharge for P2 to P4 ranges from approximately 47,750 L/day (47.8 m³/day) to 57,000 L/day (57 m³/day). These values incorporate a 50% safety factor and a 10 mm precipitation event during construction. Based on Sichardt equation, the zones of influence (ZOI) for the potential underground structures at the Site ranges from approximately 38 to 45 m.
- 8. Since the potential underground structure will be below the groundwater table, permanent drainage is required. As of January 1st, 2022, the City of Toronto has introduced a Foundation Drainage Policy and guidelines which are applicable to all new developments applications to the City of Toronto under the Ontario Planning Act. Therefore, permanent drainage for the proposed development will not be permitted.
- 9. Since the expected design dewatering rate for the unsealed excavation for P3 and P4 are above the MECP's minimum pumping daily water taking limit of 50,000 L/day, an EASR will be required to be submitted to the MECP prior to construction at the Site. An EASR application is also recommended for the construction of P2 to account for any unforeseen conditions at the Site. A discharge permit will be required from the City of Toronto if private water is to be sent to the sewer system for a short-term discharge.

- 10. The groundwater quality at the Site is not suitable for direct discharge into the City's storm sewers without pre-treatment. The groundwater can be discharged to the sanitary sewer with no treatment. However, basic treatment is recommended to be implemented at the Site. Treatment options include but not limited to the settlement of suspended solids and filtration to remove fines and associated metals.
- 11. The MECP PTTW Open Data Catalogue search indicated that there is one (1) active PTTW within a 1 km radius of the Site. The PTTW location does not fall within the estimated ZOI, and the proposed construction is not anticipated to influence nearby water taking activities.
- 12. The Site and study area are located within the Toronto Source Protection Area (SPA). The Site and study area are not located within a Highly Vulnerable Aquifer (HVA), Significant Groundwater Recharge Area (SGRA), Wellhead Protection Area (WHPA) or within an Intake Protection Zone (IPZ).
- 13. In conformance with Regulation 903 of the Ontario Water Resources Act, the decommissioning of any monitoring wells should be carried out by a licensed contractor under the supervision of a licensed water well technician.

Should you have any questions regarding these findings, please contact the undersigned.

DS Consultants Ltd.

Prepared By:

Reviewed By:

Dorothy Santos, M.Sc. Project Manager

Martin Cedier

Martin Gedeon, M.Sc., P.Geo Senior Hydrogeologist

1.0	INTRO	DUCTION	1
	1.1	Purpose	1
	1.2	Scope of Work	1
2.0	FIELDV	VORK	2
3.0	PHYSIC	CAL SETTING	2
	3.1 Pł	hysiography and Drainage	2
	3.2	Geology	2
	3.2.1	Quaternary Geology	3
	3.2.2	Bedrock Geology	3
	3.2.3	Site Geology	3
	3.3	Hydrogeology	4
	3.3.1	Local Groundwater Use	4
	3.3.2	Groundwater Conditions	4
	3.3.3	Hydraulic Conductivity	5
	3.3.4	Groundwater Quality	5
4.0	CONST	RUCTION DEWATERING	5
	4.1	Estimation of Flow Rate- Unsealed Excavation Method (Construction Dewatering)	6
	4.2	Zone of Influence During Construction	7
	4.3	Permanent Drainage (Long-term Discharge)	7
	4.4	Permit Requirements	7
	4.4.1	Environmental Activity and Sector Registry (EASR) /Permit to Take Water (PTTW)	
		Application	7
	4.4.2	Discharge Permits	8
5.0	POTEN	ITIAL IMPACTS	8
	5.1	Local Groundwater Use	8
	5.2	Point of Discharge and Groundwater Quality	8
	5.3	Current PTTW Search	8
	5.4	Source Protection Area	9
	5.5	Highly Vulnerable Aquifer	9
	5.6	Significant Groundwater Recharge Area	9
	5.7	Wellhead Protection Area	9
	5.8	Intake Protection Zone	9
	5.9	Surface Water	9
	5.10	Well Decommissioning	9
6.0	MONIT	ORING AND MITIGATION10	D
7.0	REFERI	ENCES12	1

FIGURES

- FIGURE 1 Development Site Location and MECP Water Well Record Map
- FIGURE 2 Surficial Geology Map
- FIGURE 3 Borehole and Monitoring Well Location Plan
- Figure 4 Inferred Groundwater Flow Direction Map
- Figure 5 Geological Cross Section A-A'

APPENDICES

- Appendix B Hydraulic Conductivity Analysis
- Appendix C Groundwater Quality Certificate of Analysis
- Appendix D MECP Water Wells Records

1.0 INTRODUCTION

DS Consultants Limited (DS) was retained by CAPREIT to complete a preliminary hydrogeological investigation for the proposed development at 1050 Markham Road, Toronto, ON (Site). The Site is currently occupied by a 19-storey residential apartment building and includes one (1) level of basement and one (1) level of underground parking located west of the building and beneath the current exterior asphalt surface parking area. It is DS' understanding that an infill development is being considered south of the existing building on the property with a high-rise building(s) with two (2) to four (4) levels of underground parking (P2 to P4). Detailed design was not available at the time of the current investigation. Therefore, P2 to P4 is estimated to extend approximately 7 to 13 mbgs.

This investigation is based on five (5) monitoring wells installed by DS in February 2024 in support of the hydrogeological, geotechnical and environmental investigations at the Site. The scope of work conducted at the Site is only for a preliminary investigation. Additional investigative work will be required at the detailed design stage.

This hydrogeological investigation includes an overview of the existing geological and hydrogeological conditions at the Site and the surrounding area. This investigation also provides an estimation of construction dewatering and impact assessment associated with the potential dewatering activities. The findings from this investigation will determine the dewatering and discharge permitting requirements from the Ministry of the Environment, Conservation and Parks (MECP) and the City of Toronto. This hydrogeological assessment was prepared in accordance with the Ontario Water Resources Act, Ontario Regulation 387/04, and with the Toronto Municipal Code Chapter 681-Sewers.

1.1 Purpose

The purpose of this investigation was to review and determine the need for dewatering, estimate dewatering rates, assess groundwater quality, and determine the need for a Permit to Take Water (PTTW) or an Environmental Activity Sector Registry (EASR) from the Ministry of Environment and Conservation and Parks (MECP) and the City of Toronto. Potential impacts related to construction dewatering and associated monitoring/mitigation measures were also to be investigated.

1.2 Scope of Work

The scope of work for this investigation included:

- Site visits;
- Desktop review of pertinent geological and hydrogeological resources;
- Review the MECP Water Well Records and water use in the surrounding area;
- Fieldwork including monitoring well drilling program consisting of five (5) boreholes all equipped as monitoring wells;

- Conducting single well response tests (slug tests) to determine hydraulic conductivity values across the Site;
- Characterize the stratigraphy and measure the groundwater levels across the Site;
- Collection and analysis of a groundwater sample to quantify and characterize any possible contaminants that may impact future discharge applications;
- Estimation of construction dewatering volumes, which is to be used to predict the short-term groundwater control requirements for the construction of the proposed building on Site.

2.0 FIELDWORK

In February 2024, test drilling of five (5) boreholes was carried out by a licensed water well contractor. A representative from DS was onsite for all drilling activity. The boreholes were advanced to 12.3 to 20.3 mbgs (135.7 to 148.7 masl). All boreholes were equipped with a monitoring well, with a 3.05 m screens installed to depths ranging from 7.6 to 15.2 mbgs (145.7 to 152.6 masl). The monitoring wells were developed before any use to allow for groundwater level monitoring, hydraulic conductivity testing, and to assess groundwater quality. Five (5) single well response test (SWRT) were completed by performing a rising head test to estimate hydraulic conductivity values of the soils on Site. One (1) unfiltered groundwater sample was also collected and analyzed for the parameters listed under the City of Toronto Sewer Use Bylaw to assess groundwater quality before any discharge to the City's sewers system. The borehole and monitoring well location plan in shown in **Figure 3**.

3.0 PHYSICAL SETTING

Available topographic maps, environmental, geotechnical, and hydrogeological reports were used to develop an understanding of the physical setting of the study area. Borehole logs and the Ministry of the Environment, Conservation and Parks Water Wells Records (MECP WWRs) were used to interpret the geological and hydrogeological conditions at the development Site.

3.1 Physiography and Drainage

The topography at the development Site generally slopes south towards West Highland Creek, located approximately 2 km from the Site. Based on borehole logs, surface elevation across the Site is ranges from approximately 159.3 to 161.3 masl. Drainage in the study area is generally controlled by streams, artificial channels, the local topography, and may also be influenced by fill and underground utilities.

3.2 Geology

The following presents a brief description of regional and development Site geology based on the review of available information and development site-specific soil investigations.

3.2.1 Quaternary Geology

According to the Ontario Geological Survey (OGS) mapping across the region, the Site lies within the South Slope physiographic region of southern Ontario characterized by drumlinized till plains. The surficial geology at the Site is characterized as till (5b), consisting of stone-poor, sandy silt to silty sand-textured till on Paleozoic terrain. The surficial geology map is shown in **Figure 2**.

3.2.2 Bedrock Geology

According to the OGS mapping across the region, the bedrock at the Site is comprised of shale, limestone, dolostone, and siltstone of the Georgian Bay, Blue Mountain, Billings formations and Collingwood and Eastview member. Bedrock was not encountered during the current investigation. Based on the OGS mapping, the depth to bedrock is estimated to be approximately 119-122 masl which is approximately 38 to 41 mbgs. Groundwater from underlying bedrock is not expected to influence groundwater conditions at the Site.

3.2.3 Site Geology

On-site subsurface soil conditions were summarised from the subsurface hydrogeological investigation at the Site from the boreholes advanced by DS for the current investigation. Detailed subsurface conditions are presented on the borehole log in **Appendix A** and in the geological cross section in **Figure 5**. The subsurface conditions in the boreholes are summarized in the following paragraphs.

<u>Topsoil</u>

A layer of topsoil, varying in thickness from 150 to 400 mm, was present at the surface of all boreholes. Buried topsoil was also found at a deeper depth of 1.5 to 2.3 m in borehole BH24-3 and at a deeper depth of 2.5 to 3.2 m in borehole BH24-5.

Fill Materials:

Fill materials consisting of clayey silt and sandy silt to silty sand were encountered in all boreholes and extended to depths ranging from about 1.5 to 4.6 m below existing ground surface. These materials typically contain trace to some organic matter. Buried topsoil was found at a depth of 1.5 to 2.3 m within the fill materials in borehole BH24-3 and at a depth of 2.5 to 3.2 m in borehole BH24-5.

Clayey Silt Till:

Clayey silt till deposit was encountered in all boreholes and extended to depths ranging from 3.1 to 10.7 m below existing ground surface. The clayey silt till deposit was present in a firm to hard consistency, with trace cobbles/boulders.

Sandy Silt to Silty Sand Till:

Sandy silt to silty sand till deposits were encountered in all boreholes and extended to depths ranging from 12.3 to 24.5 m below existing ground surface. Boreholes BH24-2, BH24-3 and BH24-5 were terminated in

the sandy silt to silty sand till. Trace cobbles/boulders were inferred within the sandy silt till deposits during drilling.

Silty Sand:

Silty sand was encountered in boreholes BH24-1, BH24-3 and BH24-4, extending to depths of 20.0 to 22.9 m below existing grade. Boreholes BH24-1 and BH24-4 were terminated in the silty sand.

3.3 Hydrogeology

The hydrogeology at the development Site was evaluated using the on-site monitoring wells installed by DS, and the MECP WWRs in the study area.

3.3.1 Local Groundwater Use

Based on the review of the MECP WWRs, there are thirty-one (31) water wells within a 500 m radius of the Site. All wells were noted as monitoring/test holes (MO/TH), not in use (NU), or had unknown status. **Figure 1** shows the MECP water well location plan. Groundwater level was reported to range from 2.7 to 6.4 mbgs within the study area. The study area is fully serviced by municipal water and therefore, no groundwater users are expected in the area.

3.3.2 Groundwater Conditions

The groundwater level was measured on March 6th, 2024, by DS. **Table 3-1** presents the groundwater level. The groundwater level ranged from 3.5 to 4.5 mbgs (156.4 to 156.7 masl) in shallow wells and 8.0 to 11.8 mbgs (149.4 to 150.4 masl) in deep wells. Underground utilities and infilled material may influence the shallow groundwater table at the Site. Groundwater levels may also fluctuate due to seasonal variation. The groundwater flow direction in the study area is inferred to be south towards West Highland Creek. A biweekly groundwater level monitoring program for a period of three (3) months will be required to be implemented to meet the City ToR and to assess seasonal groundwater level fluctuations.

Well ID	Surface Elevation (masl)	Depth (mbgs)	Groundwater Level (mbgs)	Groundwater Level (masl)
BH24-1	161.3	15.1	11.8	149.4
BH24-2	161.0	10.6	4.5	156.5
BH24-3	160.2	7.6	3.5	156.7
BH24-4	159.3	13.6	8.9	150.4
BH24-5	160.2	9.1	3.8	156.4

Table 3-1: Groundwater Levels in Monitoring Wells

3.3.3 Hydraulic Conductivity

Five (5) Single Well Response Test (slug tests) was completed by DS in March 2024, to estimate hydraulic conductivity (k) for the representative geological units in which the well was screened. The testing was completed using data loggers set to 5 second intervals and placed at the bottom of the monitoring wells for 3-4 hours to accurately measure the change in the hydraulic head versus time. The Hydraulic conductivity (k) value was calculated using the Bouwer and Rice method using the AquiferTest[®] Software. The resulting hydraulic conductivity values ranged from 1.8×10^{-7} to 2.1×10^{-9} m/s and is indicative of low to medium permeable soils. The semi-log plot for normalized drawdown versus time is provided in **Appendix B. Table 3-2** presents the Hydraulic Conductivity (k) value for the representative geological units.

Well ID	Screened Interval (mbgs)	Screened Formation	k-value (m/s)
BH24-1	12.1-15.1	Sandy Silt Till	1.8 X 10 ⁻⁸
BH24-2	7.6-10.6	Silty Sand Till	1.8 X 10 ⁻⁷
BH24-3	4.6-7.6	Clayey Silt Till & Silty Sand to Silt Till	2.0 X 10 ⁻⁸
BH24-4	10.6-13.6	Sandy Silt Till	5.5 X 10 ⁻⁸
BH23-5	6.1-9.1	Clayey Silt Till & Sandy Silt Till	2.1 X 10 ⁻⁹

able 3-2: Summar	y of Hydraulic	Conductivity (k) Test Results
------------------	----------------	----------------	-----------------

3.3.4 Groundwater Quality

To assess the suitability for discharge of groundwater to the City of Toronto Sewers, one (1) unfiltered groundwater sample was collected from monitoring well BH24-3 on March 5th, 2024. The samples were placed in pre-cleaned laboratory supplied vials and/or bottles provided with analytical test group-specific preservatives, as required. Dedicated nitrile gloves were used during sample handling. The groundwater samples were submitted to SGS Laboratories in Lakefield, Ontario. SGS is certified by the Canadian Association of Laboratory Accreditation Inc. (CALA) and the Canadian Standard Association (CSA). The analytical results were compared to the parameter limits listed under the City of Toronto sanitary and storm sewer by-law 100_2016. The reported analytical results indicate that TSS and total manganese exceeded storm sewer criteria. No exceedances were reported against sanitary sewer criteria. **Table 3-3** presents a summary of the exceeded parameters, and the certificate of analysis is provided in **Appendix C**.

Table 3-3: Parameters in Groundwater	Exceeding the To	oronto Bylaw Dis	charge Criteria
--------------------------------------	-------------------------	------------------	-----------------

Parameter	Unit	Storm By-Law	Sanitary By-Law	BH24-3
		Criteria	Criteria	
Total Suspended Solids (TSS)	mg/L	15	350	68
Manganese-Total	mg/L	0.05	5	0.233
Note: 0.00- Exceeded Storm Bylaw 0.00- E	xceeded Sanitar	y Bylaw		

4.0 CONSTRUCTION DEWATERING

An infill development is being considered south of the existing building on the property with a high-rise building with two (2) to four (4) levels of underground parking (P2 to P4). Detailed design was not available at the time of the current investigation. Therefore, P2 to P4 is estimated to extend approximately 7 to 13 mbgs to approximate elevations of 152.3 to 146.3 masl. Footings are estimated to extend 2.5 m below the basement floor slabs. To maintain dry conditions within the excavation footprint groundwater levels should be lowered 1 m to an approximate elevation of 148.8 to 142.8 masl for P2 to P4. Any excavation below the groundwater table will require dewatering of any groundwater seepage into the excavation. Based on the stratigraphy at the Site, the construction is expected to be ended into the till (clayey silt and silty sand). The groundwater level at the Site was recorded to range between 3.5 to 4.5 mbgs (156.4 to 156.7 masl) in shallow wells and 8.0 to 11.8 mbgs (149.4 to 150.4 masl) in deep wells. Therefore, the excavation is anticipated to be below the groundwater table.

4.1 Estimation of Flow Rate- Unsealed Excavation Method (Construction Dewatering)

This section calculates the estimated dewatering required during the construction of the proposed building based on the above noted k-value using the steady-state flow equation for unsealed excavation as follows:

$Q = \frac{\pi (H^2 - h^2)}{2.3 \log\left(\frac{R_0}{re}\right)}$	Equation 4.1
$R_0 = C(H - h)\sqrt{k}$	Equation 4.2

$$r_e = \sqrt{\frac{ab}{\pi}}$$

	P2	P3	P4
H- Initial Elevation of Water Table (m)	8.9	11.9	14.9
h- Final Elevation of Water Table (m)	1	1	1
K- Hydraulic Conductivity (m/s)	1.8 X 10 ⁻⁷	1.8 X 10 ⁻⁸	1.8 X 10 ⁻⁹
Ro- Radius of influence (m)	38	42	45
Re- Equivalent Radius (m)	27.6	27.6	27.6
A- Area (m2)	2,400	2,400	2,400
C- Dimensionless Constant	3	3	3
Flow Rate (Q) L/day	12,500	17,000	22,000
Storm water (L/day)	24,000	24,000	24,000
Maximum Flow Rate (Q) -50% safety factor + storm water (L/day)	42,750	49,500	57,000

Equation 4.3

Additional pumping capacity may be required to maintain dry conditions within the open excavations during and following a major precipitation event. The estimated flow rate is based on the excavation dimensions and a 10 mm precipitation event in 24 hours. The total estimated dewatering that may be required from a 10 mm precipitation event is approximately **24,000 L/day (24 m³/day).**

The total estimated daily rate for short term construction is estimated to range from **47,750 L/day (47.8 m³/day) to 57,000 L/day (57 m³/day)** for P2 to P4. These values incorporate a 100% safety factor and the above-mentioned storm water. It is expected that the initial dewatering rate will be higher to remove groundwater from within the overburden formation. The dewatering rates are expected to decrease once the target water level is achieved in the excavation footprint as groundwater will have been removed locally from storage resulting in lower seepage rates into the excavation. The maximum flow calculation is intended to provide conservative values to account for unforeseeable conditions that may arise during construction.

4.2 Zone of Influence During Construction

The radius of influence (Ro) for the construction dewatering was calculated based on the Sichardt equation (Equation 4.2). Ro is the distance at which the drawdown resulting from pumping is negligible. The equation is empirical and was developed to provide representative flow rates using the steady-state flow dewatering equations as indicated above. Under steady-state conditions, Ro of pumping will extend until boundary flow conditions are reached, and sufficient water inputs are equal to the discharge rate due to pumping. Therefore, the Sichardt equation is used to provide a representative flow rate but is not precise in determining the actual radius of influence by pumping. Based on Sichardt equation the zone of influence for the proposed development at the Site ranges from approximately 38 to 45 m for P2 to P4.

4.3 **Permanent Drainage (Long-term Discharge)**

Following construction of the underground structure, long-term groundwater flow to the underfloor drainage system for a building will be a function of the upward flux and drainage along the foundation wall. Since the potential underground structure will be below the groundwater table, permanent drainage is anticipated. As of January 1st, 2022, The City of Toronto has introduced a Foundation Drainage Policy and guidelines which are applicable to all new developments applications to the City of Toronto under the Ontario Planning Act. Therefore, permanent drainage for the proposed development will not be permitted.

4.4 Permit Requirements

4.4.1 Environmental Activity and Sector Registry (EASR) /Permit to Take Water (PTTW) Application

An Environmental Activity Sector Registration (EASR) is required to be submitted to the Ministry of the Environment, Conservation and Parks (MECP) if the taking of groundwater and stormwater for a temporary construction project is between 50,000 L/day and 400,000 L/ day. The EASR application is an online registry and should be submitted to the MECP before any construction dewatering. A PTTW is only required to be submitted to the MECP if the taking of groundwater and stormwater for a temporary construction project is between 50,000 L/day and 400,000 L/ day.

Since the expected design dewatering rate for the unsealed excavation for P3 and P4 are above the MECP's minimum pumping daily water taking limit of 50,000 L/day, an EASR will be required to be submitted to the MECP prior to construction at the Site. An EASR application is also recommended for the construction of P2 to account for any unforeseen conditions at the Site.

4.4.2 Discharge Permits

A discharge permit will be required from the City of Toronto if private water is to be sent to the sewer system for a short-term discharge.

5.0 POTENTIAL IMPACTS

The following are the predicted potential impacts as a result of construction dewatering:

5.1 Local Groundwater Use

The area is serviced by municipal water supply. Since groundwater is not expected to be used as a source of drinking water within the ZOI for the proposed development, there will be no short-term or long-term predicted impacts to private water wells occurring from the proposed dewatering activities.

5.2 Point of Discharge and Groundwater Quality

Groundwater quality analysis indicated that TSS and total manganese exceeded the storm Sewer Use By-Law criteria. Therefore, groundwater at the development Site is not suitable for discharge into the City's storm sewers without treatment. The groundwater can be discharged to the sanitary sewer with no treatment. However, basic treatment is recommended to be implemented at the Site. Treatment options include but not limited to the settlement of suspended solids and filtration to remove fines and associated metals.

5.3 Current PTTW Search

The MECP Permit to take Water (PTTW) Open Data Catalogue was searched within a 1 km radius of the Site. The search indicated that there is one (1) active PTTWs within 1 km of the Site. However, the PTTW locations do not fall within the estimated ZOI, and the proposed construction is not anticipated to influence nearby water taking activities. However, the groundwater interferences from nearby water taking activities may lower groundwater levels across the Site. The PTTW search is summarized in **Table 5-1** below.

Permit Number	Permit Holder Name	Purpose	Specific Purpose	Max Litres Per Day	Source Type	Distance (km)	
2758- ABMQSA	R.A.B Properties Limited	Dewatering	Other- Dewatering	139,000	Groundwater	0.13	

Table 5-1: PTTW Search within 1 km of Site

5.4 Source Protection Area

The Site is located within the Toronto Source Protection Area (SPA). The Source Protection Plan contains policies aimed at protecting drinking water sources by reducing or eliminating significant threats to sources of municipal drinking water. Based on the MECP WWRs, there are no groundwater users within the ZOI. Therefore, the proposed development is not anticipated to influence drinking water supply within the study area.

5.5 Highly Vulnerable Aquifer

The Site and study area are located are not located within a Highly Vulnerable Aquifer (HVA). HVAs are an aquifer susceptible to contamination because of its location near the ground's surface or where the types of materials in the ground around it are highly permeable. HVAs typically occur in areas of coarse or sandy soils with a high groundwater table. HVA impacts are not anticipated due to the proposed development.

5.6 Significant Groundwater Recharge Area

The Site and study area are not located within a Significant Groundwater Recharge Area (SGRA). A SRGA is an area where precipitation seep underground into an aquifer and one that helps maintain the water level in an aquifer that supplies a community with drinking water. Recharge may be impacted through developments that do not encourage infiltration of water back into the aquifer.

5.7 Wellhead Protection Area

The Site and study area are not located within a wellhead protection area (WHPA Q1 or WHPA Q2). WHPA Q1 refers to the area where activities that take water without retuning it to the same source may be a threat, and WHPA Q2 refer to the area where activities that reduce recharge may be a threat.

5.8 Intake Protection Zone

The Site and the study area are not located within a water intake protection zone (IPZ). No IPZ impacts are anticipated due to the proposed temporary dewatering.

5.9 Surface Water

There are no surface water features within the study area. Therefore, there are no surface water impacts anticipated from construction dewatering activities.

5.10 Well Decommissioning

Following the completion of construction activities, all dewatering wells, well points, eductors and monitoring wells installed at various stages of this project must be decommissioned. The installation and eventual decommissioning of the wells and the dewatering system must be carried out by a licenced water well contractor in accordance with Regulation 903 of the Ontario Water Resources Act.

6.0 MONITORING AND MITIGATION

Based on the finding of hydrogeological assessment and associated potential impacts due to development, the following monitoring and mitigation program is provided:

- A bi-weekly groundwater level monitoring program has been implemented for a period of three (3) months to comply with the City of Toronto TOR for discharge permitting purposes.
- Baseline groundwater quality has been assessed and established before construction. However, groundwater quality can change based on several factors (land-use change, spills, etc.) and should be monitored during construction dewatering and after construction to ensure that water quality meets the guideline or regulations associated with any permits from the MECP and City of Toronto.
- Once a groundwater dewatering system is set up at the Site, daily and weekly monitoring should be implemented to assess the groundwater conditions such as water levels, measurement of discharge flow, discharge water quality and any adverse impacts as a result of dewatering include settlement.
- Following the completion of construction activities, all dewatering wells, well points, eductors and monitoring wells installed at various stages of this project must be decommissioned. The installation and eventual decommissioning of the wells and the dewatering system must be carried out by a licensed water well contractor in accordance with Regulation 903 of the Ontario Water Resources Act.

Should you have any questions regarding these findings, please contact the undersigned.

DS Consultants Ltd.

Prepared By:

Dorothy Santos, M.Sc. Project Manager

Reviewed By:

Martin Cedia

Martin Gedeon, M.Sc., P.Geo. Senior Hydrogeologist

7.0 **REFERENCES**

Chapman, L.J., and D.F. Putnam; The Physiography of Southern Ontario, Third Edition, Ontario Geological Survey Special Volume 2; 1984, & 2007.

Freeze, R.A. and J.A. Cherry. "Groundwater". Prentice-Hall, Inc. Englewood Cliffs, NJ. 1979.

Ontario Regulation 153/04 made under the Environmental Protection Act, July 1, 2011.

Ontario Regulation 245/11- Environmental Activity and Sector Registry.

Powers, J. Patrick, P.E. (1992); Construction Dewatering: New Methods and Applications - Second Edition, New York: John Wiley & Sons.

Pat M. Cashman and Martin Preene; Groundwater Lowering in Construction- Second Edition, CRC Press.

Source Water Protection Information Atlas. King's Printer for Ontario, 2022 <https://www.gisapplication.lrc.gov.on.ca/SourceWaterProtection/Index.html?viewer=SourceWaterProte ction.SWPViewer&locale=en-US >

The City of Toronto Sewers By-law (Municipal Cod, Chapter 681), March 28, 2019.

Figures

Scale:

Rev: 0 Project No.:

24-014-100

As Shown

Image/Map Source: Google Satellite Image

Figure No .:

1

Image/Map Source: Google Satellite Image

0

Appendix A

•							_			5112										1 01
PROJ	ECT: Preliminary Geotechnical Investig	gation	I					DRIL	LING E	DATA										
CLIEN	IT: CAPREIT							Metho	od: Sol	id Ster	n Aug	er								
PROJ	ECT LOCATION: 1050 Markham Rd., 1	Toron	ito, C	N				Diam	eter: 1	50mm						R	EF. NC	D.: 24	4-014	1-100
DAIL			1001	-7 00				Date:	Feb-()7-202	4					E	NCL N	0.: 2		
BHLC		50 E 0	423	07.33 SAMDI	ES			DYNA	MIC CC	NE PE	NETR/	ATION							1	
					.E3	н		RESIS	STANCE	E PLOT	\geq			PLAST	IC NAT	URAL STURE		z	TWT	REMARKS
(m)		LOT			SN E	WAT	z				0 8 	30 10 1 2a)	10	W _P	CON	ITENT W	WL	ET PE (kPa)	, UNL	GRAIN SIZE
<u>ELEV</u> DEPTH	DESCRIPTION	TA F	BER		BLO/ 0.3		ATIC		NCONF	INED	+	FIELD V/ & Sensitiv	ANE vity			0		(Cu)	TURA (KN	DISTRIBUTIC (%)
161 3		STR/	NUM	ТҮРЕ	z	GRO CON	ELEV	• Q 2	UICK TI 20 4	RIAXIAI 0 6	- × 0 8	LAB V/ 80 10	ANE DO		1ER CC	20	30		≥	GR SA SI
160.0	TOPSOIL: 200mm	<u></u>	1	<u> </u>	0		161	E												-
0.2	FILL: sandy silt, trace organics, trace gravel, some clay, brown to	\otimes	<u> </u>	00	3		101	Ē												
1	dark brown, moist, loose	\otimes		~~				Ē												
		\bigotimes		- 33	°		160	-								۴ 		-		
159 4		\mathbb{X}	3	SS	9			Ē								2				
² 1.9	CLAYEY SILT TILL: sandy, trace		Ľ					Ē							0					
	stiff			92	10		159	E										1		5 11 38
3		jø,		33	10			F							P I					5 44 50
-			-		10		158	Ē												
		19.	5	55	10			Ē							o					
4								Ē												
							157	<u>-</u>												
			6	~~	10			E.												
5				33	10		450	Ē												
							150	E												
6								Ē												
			7	~~	12		155	<u> </u>										-		
		Į.	<u> </u>	55	13			Ē												
<u>.</u>		i	1					Ē												
		r]]	1				154	-												
	grey below 7.6m			92	8			Ē												
5				00	0		152	Ē							Ĭ					
							155	Ē												
2								Ē												
		jø,	- -	92	10		152	<u> </u>										-		
		۲Į		00	10			Ē							Ĭ					
٥		1.	1					Ē												
							151													
150.6 10.7	SANDY SILT TILL: trace to some	10	-					Ē												
<u>.</u>	clay, trace gravel, grey, moist, dense to very dense		. 10	SS	48		150	Ē						0						
		•					150	Ē												
2						ŀ:₽:	W. L.	⊨ 149.5⊤	 m											
		i o i	-				Mar 0	5, 2024	1											
			11	SS	77			Ē							¢ 					
3		· ð				ŀ.≣:		Ē												
							148	<u>-</u>										1		
		Ģ	12,	ss ,	50/	l:目:		Ē						0						6 34 48
<u>.</u>			1		1 <u>30m</u> r	¶:≣:	147	-												
		· •	1			l:∃:	14/	Ē										1		
			1			Ľ₽		Ē										1	1	
			-			::⊟:	146	Ē										-		
			13	SS	50/		Í	Ē						6	þ			1	1	
					 sumn 				1	1		1	1	1	1	1	1	1	1	

	DS CONSULTANTS LTD. Geotechnical & Environmental & Materials & Hydrogeology				LO	g of	BOR	EHC	DLE E	3H24	1-1								2 OF 2
PROJ CLIEN PROJ DATU	ECT: Preliminary Geotechnical Investig IT: CAPREIT ECT LOCATION: 1050 Markham Rd., T M: Geodetic	ation oron	nto, O	N				DRILI Metho Diam Date:	LING D od: Soli eter: 1t Feb-0	ATA d Ster 50mm 17-202	n Aug 4	er			RE	EF. NC).: 24 0.: 2	4-014	-100
BH LC	SOUL PROFILE	DEC	54235		ES		<u> </u>	DYNA	MIC CO	NE PE	NETRA	ATION					1		
(m) <u>ELEV</u> DEPTH	DESCRIPTION	STRATA PLOT	NUMBER		"N" BLOWS	GROUND WATER CONDITIONS	ELEVATION	RESIS SHEA O UI • Q 2	AR STF NCONFI UICK TF 20 41	PLOT 0 6 RENG INED RIAXIAI 0 6	0 8 TH (kF - × 0 8	30 10 FIELD V/ & Sensitiv LAB V/ 30 10	00 ANE vity ANE 00	PLASTI LIMIT W _P WAT	URAL STURE ITENT W O	LIQUID LIMIT WL T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m ³)	REMARKS AND GRAIN SIZE DISTRIBUTION (%) GR SA SI CL
141.6 5141.6 5149.3 20.0	SANDY SILT TILL: trace to some clay, trace gravel, grey, moist, dense to very dense(Continued) SILTY SAND: trace clay, trace gravel, grey, wet, very dense END OF BOREHOLE: Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water Level Readings: Date: Water Level(mbgl): Mar. 5, 2024 11.84			SS	50/ 30mr		145 144 143 142												

	Geotechnical & Environmental & Materials & Hydrogeology				LO	G O	F BOI	REHOLE	BH2	4-2								1 0	F 1
PRO. CLIEN PRO.	IECT: Preliminary Geotechnical Investig NT: CAPREIT IECT LOCATION: 1050 Markham Rd., 1	atior Foror	n nto, O	N				DRILLING Method: S Diameter	DATA Solid Ste	m Auge	er			RI	EF. NC).: 24	4-014	I-100	
BHL	DCATION: See Drawing 1 N 4848250.0	9 E 6	54236	64.78				Dale. Fe	J-07-202	4				EI	NCL IN	0 3			
	SOIL PROFILE		S	SAMPL	ES	IER		DYNAMIC RESISTAN	CONE PE CE PLOT			PLAS LIMIT			LIQUID	z	T WT	REMARI AND	ĸs
(m) ELEV DEPTH	DESCRIPTION	STRATA PLO1	JUMBER	ЧРЕ	N" <u>BLOWS</u> 0.3 m	SROUND WA	ELEVATION	SHEAR S O UNCO QUICK 20	TRENG	TH (kP) + L × L	a) FIELD VANE & Sensitivity LAB VANE	₩ _P ► ₩A	ATER C	W ONTEN	w _∟ ——– IT (%) 30	POCKET PE (Cu) (kPa)	NATURAL UN (kN/m ³)	GRAIN S DISTRIBU ⁻ (%)	IZE TION
161.0 16 0.9 0.2	TOPSOIL: 200mm FILL: clayey silt, trace organics,	×1/,	1	SS	7								0	Ť					
	trace sand,, brown to dark brown, moist, firm to stiff		2	SS	12		16						0			-			
-			3	SS	5		15						0						
-158.4	layer of sand till at 2.3m CLAYEY SILT TILL: sandy, trace to		4	SS	14		10:						0	0					
-3	some gravel, brown to grey, moist, stiff to hard		5	SS	18		15						•			-		10 42 35	5 1
						∇	15									-			
5			6	SS	35		W.L. Mar0 15	156.5 m 5, 2024				0							
							15												
- - - -	grey below 6.1m		7	SS	11								o						
- 153.5 - 7.5	SILTY SAND TILL: some clay						. 15									-			
- - -	trace gravel, brown to grey, moist, loose	· · · · ·	8	SS	6		15						0			-		5 49 36	31
- ₀152.0 - 9.0	SILTY SAND TILL: some clay,						15									-			
- - - - 10	trace gravel, brown to grey, moist, dense to very dense		9	SS	32		15						þ						
-																			
11			10	SS	84		15						•						
1 <u>12</u> 148.7				00	50/		14						2						
12.3	END OF BOREHOLE: Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water Level Readings: Date: Water Level(mbgl): Mar. 5, 2024 4.45			(66)	50/ 1 <u>30m</u> r	ĥ													

 $\begin{array}{c} \hline \textbf{Measurement} & \overset{1\text{st}}{\underline{\checkmark}} & \overset{2\text{nd}}{\underline{\checkmark}} & \overset{3\text{rd}}{\underline{\checkmark}} & \overset{4\text{th}}{\underline{\checkmark}} \end{array}$

	ECT: Preliminary Geotechnical Investig T: CAPREIT	ation	ta 0	NI.				DRILL Method	ING D	ATA ow Ste	em Au	ger/M	ud Ro	tary		-				1.400
)ATU	ECT LOCATION: 1050 Markham Rd., 1 M: Geodetic	oron	10, U	ν Ν				Diame Date:	Feb-1	0mm 2-202	1					E	NCL N	0.: 24 0.: 4	1-014	-100
BH LO	CATION: See Drawing 1 N 4848253.6 SOIL PROFILE	3 E 6	4233	30.99 SAMPL	ES			DYNAN			NETRA	TION								
m) <u>_EV</u> PTH	DESCRIPTION	LOT	ER		LOWS D.3 m	ND WATER	VIION	SHEAF) 8 TH (kP +	0 10 Pa))0 NE	PLASTI LIMIT W _P		'URAL STURE ITENT W	LIQUID LIMIT W _L	OCKET PEN. (Cu) (kPa)	URAL UNIT WT (kN/m ³)	REMARKS AND GRAIN SIZ DISTRIBUTI
60.2		STRAI	NUMB	ТҮРЕ	۵) ۲	GROU	ELEV/	• QU 20	ICK TF	RIAXIAL	× 1	LAB VA	ANE 00	WA ⁻	TER CO	ONTEN 20	IT (%) 30	۵.	NAT	(%) GR SA SI
6 0.0 0.2	TOPSOIL: 200mm FILL: silty sand, gravelly, grey, moist, compact		1	SS	25		160	1 1 1 1						0	0					
0.8	FILL: silty sand to sandy silt, trace rootlets, some clay, trace organics, dark brown to brown, moist, loose		2	SS	6		159								0			-		
1.5	TOPSOIL:	<u>, ' '</u> <u>''</u> . <u>''</u>	3	SS	10		158								0					
2.3	FILL: clayey silt, trace organics, brown, moist, firm		4	SS	5		100								o					
3.0	CLAYEY SILT TILL: sandy, trace gravel, trace cobbles/boulders, brown, sand seams, moist, very stiff		5	SS	21	⊻	157 W. L. Mar 0	E 156.7 m 5, 2024 E	1						¢			_		Switched t Mud rotary
	grey below 4.6m			<u> </u>	16		156													
			6	55	16		155								0			-		
54.2 6.0	SILTY SAND TO SANDY SILT TILL: some clay, trace gravel, grey, moist, loose to compact		7	SS	8		154							c				-		4 44 40
							153													
	wet sand layer at 7.6m		8	SS	14	-	152							c				-		
						_	151													
			9	SS	12										þ					
						-	150											-		
			10	SS	19		149								•			-		
48.0 12.2	SILT TO CLAYEY SILT: trace sand, trace gravel, grey, moist, very dense	Φ	11	SS	50/ 50mm	ſ	148								0					
<u>46.7</u>	SANDY SILT TILL: trace to some						147													
	clay, trace gravel, grey, moist, very dense	· · · ·	12	<u>ss</u>	50/ 75mm	K	146							0						
	clayey at 15.2m		13	SS	88		145													

	DS CONSULTANTS LTD. Geotechnical & Environmental & Materials & Hydrogeology				LO	g of	BOR	EHOI	.E E	3H24	-3									2 OF 2
PROJ	ECT: Preliminary Geotechnical Investiga	ation	1					DRILLI	NG D	ATA										
CLIEN	IT: CAPREIT							Method	: Hol	low Ste	em Au	iger/M	ud Ro	tary						
PROJ	ECT LOCATION: 1050 Markham Rd., T	oron	ito, O	N				Diamet	er: 20	00mm						RI	EF. NC	0.: 24	4-014	-100
DATU	M: Geodetic							Date: I	eb-1	2-2024	4					E١	NCL N	O.: 4		
BH LC	CATION: See Drawing 1 N 4848253.63	3 E 6	64233	30.99	EQ		-	DYNAM	IC CO	NE PEI	NETRA	TION						<u> </u>		
			8		.E3	ËR		RESIST	ANCE		\geq		20	PLASTI LIMIT	C NAT MOIS	URAL		z	T WT	REMARKS AND
(m)		LOT			SN E	WAT NNS	z	SHEAF) 8 TH (kF	0 10 Pa)	JU I	W _P	CON	ITENT W	WL	(kPa)	VL UNI	GRAIN SIZE
DEPTH	DESCRIPTION	ATA I	IBER	ш	BLO 0.3		VATIC	O UNO		INED	+	FIELD V	ANE vity	WAT			T (%)	δ Ω Ω	ATUR/ (kh	(%)
		STR	NUN	ТҮР	ż	GRC	ELE	20	4	0 60) 8	LAB V/ 0 10	00	1	0 2	20 ;	30		2	GR SA SI CL
-	SANDY SILT TILL: trace to some clay, trace gravel, grey, moist, very						144	-												
Ē	dense(Continued) very moist to wet below 16 5m																			
<u>17</u>			14	SS	50/ 75mm		143	-						0						
Ē			1				140													
18																				
Ē			15	66	50/		142	-							o					
-					30mr															
<u>19</u>		0	1				141													
E																				
- 140.4 20 19.8	SILTY SAND: trace clay, trace		16	SS	50/										0					
Ē	gravel, grey, wet, very dense				50mm		140	-												
Ē																				
21							130													
Ē	gravelly at 21.3m		. 17	SS	50/		100													
22					<u>zəmn</u>															
							138	-												
- 127.2																				
$\frac{23}{2}$ 22.9	SANDY SILT TILL: trace clay,	10	18	SS	50/		137	-						0						
Ē	trace gravel, grey, moist, very dense				<u> 25mm</u>		107													
24		•																		
135 7							136	-												
24.5	END OF BOREHOLE:	101	19/	. 66 _	50/ 50mm			-						<u> </u>						
	1) 50mm dia. monitoring well																			
	Installed upon completion. 2) Water Level Readings:																			
	Date: Water Level(mbgl):																			
	Mar. 5, 2024 3.46																			
· · · ·				I	1		·									1		•		

DS SOIL LOG-2021-FINAL 24-014-100GEO.GPJ DS.GDT 24-3-12

	ECT: Preliminary Geotechnical Investig IT: CAPREIT	ation	ta C					DRILL Metho	ING E d: Hol	DATA low Ste	em Au	ıger				D				100	
DATU	M: Geodetic	oron	110, C	/IN				Date:	Feb-()9-2024	1					E	NCL N	0.: 24 0.: 5	4-014	-100	
3H LC	CATION: See Drawing 1 N 4848224.5	5 E 6	64230	01.72	FS			DYNA	AIC CC		NETRA	ATION		1							
(m) LEV		PLOT			SMC	D WATER	NO	SHEA	R STI) 8 TH (kF	80 1 	00	PLAST LIMIT W _P	IC NAT MOIS CON	TURAL STURE NTENT W	LIQUID LIMIT W _L	:KET PEN. J) (kPa)	al UNIT WT (N/m ³)	REM A GRA DISTR	/ARKS AND .IN SIZE RIBUTIO
59.3	DESCRIPTION	STRATA	NUMBER	ТҮРЕ	0.0 "N"	GROUNI	ELEVAT	0 UN • QL 21	ICONF IICK TI) 4	INED RIAXIAL 0 60	+ × 8 (A Sensiti		WA	TER C	ONTEN	IT (%) 30	00 ⁰ 0	ANTUR ()	GR SA	(%) A SI (
0.0 58.9 0.4	FILL: sandy silt, trace organics,		1	SS	4		159	-							2	•					
57 8	some clay, brown to dark brown, moist to wet, loose to compact		2	SS	19		158								o			_			
1.5	CLAYEY SILT TILL: sandy, trace gravel, brown to grey, moist, firm to stiff		3	SS	7										o						
			4	SS	9		157								¢						
56.1 3.2	SILTY SAND TO SANDY SILT TILL: some clay, trace gravel, grey, moist, loose to compact		5	SS	12		156								0					7 42	2 39 -
	layer of wet gravelly sand at 4.0m						155											-			
			6	SS	19		154								o						
			7	SS	8		153								0						
							152														
			8	55	14		151	-							0 			_			
			9	SS	12	⊻	W.L. Mar 0	[- 150.4 r 5, 2024	1						•						
							· · 140														
<u>48.8</u> 10.5	SANDY SILT TILL: trace to some clay, trace gravel, grey, moist, very dense		10	SS	90		145							c						1 20) 65 ⁻
		••					148														
		•	. 11	ss	50/ 1 <mark>30mr</mark>		147								0			-			
							146														
	layer of silty sand, wet at 13.7m		. 12	ss	50/ 1 <mark>30mr</mark>		145								0						
			. 13	SS	50/ 1 <u>30mr</u>)	144								•			1			

	DS CONSULTANTS LTD. Geotechnical & Environmental & Materials & Hydrogeology				LOC	g of	BOR	EHC	DLE I	BH24	1-4									2 OF	- 2
PRO. CLIEI PRO. DATU BH L	IECT: Preliminary Geotechnical Investig NT: CAPREIT IECT LOCATION: 1050 Markham Rd., T JM: Geodetic DCATION: See Drawing 1 N 4848224.5	ation Foron	to, O	N 01.72				DRILI Metho Diam Date:	LING E od: Hol eter: 2 Feb-0	0 ATA Iow St 00mm 09-202	em Au 4	ıger				RE	EF. NC).: 24).: 5	1-014	-100	
	SOIL PROFILE		s	AMPL	ES	~		DYNA RESIS	MIC CC	NE PE		TION			_ NATI	URAL			μ	REMARK	S
(m) <u>ELEV</u> DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	түре	"N" <u>BLOWS</u> 0.3 m	GROUND WATE CONDITIONS	ELEVATION	2 SHEA 0 UI • QI 2	0 4 AR STF NCONF UICK TI	0 6 RENG INED RIAXIAI 0 6	0 8 TH (kF - × 0 8	0 10 Pa) FIELD V/ & Sensitiv LAB V/ 0 10	00 ANE ANE ANE	WAT	TER CC	TURE TENT N DONTEN 20 3	LIMIT WL → T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT V (KN/m ³)	AND GRAIN SIZ DISTRIBUTI (%) GR SA SI	ZE ION CL
17 17 18 - 141.0	SANDY SILT TILL: trace to some clay, trace gravel, grey, moist, very dense(Continued)		14	SS	50/ 00mr		143 142 141							0						8 50 28	5
18.3	SIL I Y SAND: trace clay, trace gravel, grey, wet, very dense		15	ss	50/ 30mn 50/ 130mn		140											-		0 00 20	0
20.3	END OF BOREHOLE: Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water Level Readings: Date: Water Level(mbgl): Mar. 5, 2024 8.92 Nar. 5, 2024 8.92																				

~	Geotechnical � Environmental � Materials � Hydrogeology				LO	G C)F B(OR	EHC	DLE I	3H24	-5									1 OF 1
PROJE	ECT: Preliminary Geotechnical Investiga	ation							DRILL	ING D	ATA										
CLIEN	T: CAPREIT								Metho	d: Sol	id Sten	ו Aug	er								
PROJE	ECT LOCATION: 1050 Markham Rd., T	oron	ito, O	N					Diam	eter: 1	50mm						R	EF. NO	D.: 24	4-014	-100
DATU	M: Geodetic								Date:	Feb-0	8-2024	1					E١		O.: 6		
BHIO	CATION: See Drawing 1 N 4848256.3	F 64	12276	3 17																	
DITEO					EQ	1			DYNA		NE PEI	NETRA	TION								
					L3	Ľ.			RESIS	TANCE	PLOT	\geq			PLAST		URAL STURE	LIQUID		¥	REMARKS
(m)		01			ပ	VATE	s -	7	2	0 4	0 60) 8	0 10	00	LIMI I Wo	CON	NTENT	LIMI I W.	r PEN	UNIT (°	GRAIN SIZE
ELEV	DESCRIPTION	A PL	к		3 M M	2			SHEA	RST	RENGT	TH (kF	Pa) FIELD V	ANE	 		。 •——	—	ЯŚ	(kN/n	DISTRIBUTION
DEPTH		ZAT,	MBE	ш	립	l S		A > -	• QI	JICK TI	RIAXIAL	×	& Sensiti LAB V	vity ANE	WA	TER C	ONTEN	T (%)	d S	NATL	(%)
160.2		STF	N	Σ	z	GR	8 2	Ľ	2	0 4	0 60) 8	0 10	00	1	10	20 3	30			GR SA SI CI
160.9	TOPSOIL: 150mm			~~~	_			160													
- 0.2	FILL: sandy silt, trace organics,	\bigotimes		55	5			100	Ē												
E	dark brown, moist, loose to compact	\bigotimes							F												
		\boxtimes	2	SS	22				Ē							0					
E		\bigotimes	<u> </u>					159	-												
	dark brown at 1.5m	\bigotimes	3	SS	23				E							0					
-2		ĚŇ	Ľ						E												
157.7		\bigotimes	<u> </u>					158	-												
2.5	FILL: topsoil	<u>×1 1/</u>	4	SS	12				E							° .					
3 157 0		1/2 . 24							Ē										1		
3.2	FILL: clayey silt, sandy, trace	XX	5	22	15			157	-							-		0	-		
E	organics, dark grey, moist, stiff to	\bigotimes	Ľ		13		7		E							0		Ĭ			
4	very sun	\bigotimes				ľ	W.	L.	156.4 r	'n											
E		\bigotimes					Ma	r 05	5, 2024 F										-		
-155.6		X							Ē												
5 4.0	gravel, brown to grev, moist, verv	lli	6	SS	20				Ē							6					
Εl	stiff		1					155	-										_		
E									F												
-		ΥĽ	1						Ē												
						┟╞		15/	Ē												
E	arev below 6.4m	KÜ	7	SS	17	I:E		104	-							>					
E	g) =		1—			ł:E			È.												
						ĿΕ	11.		Ē												
152.6		łł	1			ŀF		153	-												
7.6	SANDY SILT TILL: trace to some	i di				ĿE			Ē												
-	clay, trace gravel, grey, moist,		8	SS	16	ĿE			Ē							Ŷ					3 41 44 12
E	compact					1.E		152	-												
Ē			1			ŀΕ	<u>}:</u>]		E												
9						L E			Ē												
E			۰	SS	14			151	-												
Ē			Ľ	00	17				E							1					
10		i d							E												
E								150	-										-		
Ē		¢	1						Ē												
- 11		[]	10	22	11				Ē												
			10	- 55				149	-							Ĕ			-		
-									F												
-			1						Ē												
								1/18	-												
È	very dense below 12.2m	:]].	11	SS	50/ 140mr			1-0	E							6					
E		.							-												
<u>13</u>		ŀ							Ē												
E		ŀ						147	-												
146.4			12	66	50/				É					Ļ		<u> </u>	<u> </u>				
13.8	END OF BOREHOLE:				30mr	4															
	1) 50mm dia. monitoring well																				
	Installed upon completion.					1													1		
	2, maior Lover readings.																				
1	Date: Water Level(mbgl):																				
	Mar 5 2024 3.8		-						-					1		1	1	1			
	Mar. 5, 2024 3.8																				

Appendix B

Appendix C

CA40014-MAR24 R1

24-014-100, 1050 Markham Rd, Sc arborough ON

Prepared for

DS Consultants

First Page

CLIENT DETAILS	6	LABORATORY DETAIL	LS
Client	DS Consultants	Project Specialist	Brad Moore Hon. B.Sc
		Laboratory	SGS Canada Inc.
Address	6221 Highway 7 Unit 16	Address	185 Concession St., Lakefield ON, K0L 2H0
	Vaughan, Ontario		
	L4H 0K8. Canada		
Contact	Meysam Jafari	Telephone	705-652-2143
Telephone	905-264-9393	Facsimile	705-652-6365
Facsimile	905-264-2685	Email	brad.moore@sgs.com
Email	mjafari@dsconsultants.ca	SGS Reference	CA40014-MAR24
Project	24-014-100, 1050 Markham Rd, Sc arborough ON	Received	03/05/2024
Order Number		Approved	03/12/2024
Samples	Ground Water (1)	Report Number	CA40014-MAR24 R1
		Date Reported	03/12/2024

COMMENTS

RL - SGS Reporting Limit

Nonylphenol Ethoxylates is the sum of nonylphenol monoethoxylate and nonylphenol diethoxylate.

Temperature of Sample upon Receipt: 7 degrees C Cooling Agent Present: Yes Custody Seal Present: Yes

Chain of Custody Number: 035687

SIGNATORIES

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-7
Exceedance Summary	8
QC Summary	9-18
Legend	19
Annexes	20

Client: DS Consultants

Project: 24-014-100, 1050 Markham Rd, Sc arborough ON

Project Manager: Meysam Jafari

MATRIX: WATER			Sample Number	8
			Sample Name	BH 24-3
L1 = SANSEW / WATER / Toronto Sewer Use By Law - Sanita BL_100_2016	ary and Combined Sewer Discharge	-	Sample Matrix	Ground Water
L2 = SANSEW / WATER / Toronto Sewer Use By Law - Storm	Sewer Discharge - BL_100_2016		Sample Date	05/03/2024
Parameter	Units RL	L1	L2	Result
General Chemistry		1		
Biochemical Oxygen Demand (BOD5)	mg/L 2	300	15	< 4↑
Total Kjeldahl Nitrogen	as N mg/L 0.5	100		< 0.5
Total Suspended Solids	mg/L 2	350	15	68
Metals and Inorganics				
Fluoride	mg/L 0.06	10		0.14
Cyanide (total)	mg/L 0.01	2	0.02	< 0.01
Aluminum (total)	mg/L 0.001	50		0.250
Antimony (total)	mg/L 0.0009	5		< 0.0009
Arsenic (total)	mg/L 0.0002	1	0.02	0.0008
Cadmium (total)	mg/L 0.000003	0.7	0.008	0.000009
Chromium (total)	mg/L 0.00008	4	0.08	0.00107
Cobalt (total)	mg/L 0.000004	5		0.00113
Copper (total)	mg/L 0.001	2	0.04	< 0.001
Lead (total)	mg/L 0.00009	1	0.12	0.00022
Manganese (total)	mg/L 0.00001	5	0.05	0.233
Molybdenum (total)	mg/L 0.0004	5		0.0044
Nickel (total)	mg/L 0.0001	2	0.08	0.0038
Phosphorus (total)	mg/L 0.003	10	0.4	0.019
Selenium (total)	mg/L 0.00004	1	0.02	0.00019
Silver (total)	mg/L 0.00005	5	0.12	< 0.00005
Tin (total)	mg/L 0.00006	5		0.00110

Client: DS Consultants

Project: 24-014-100, 1050 Markham Rd, Sc arborough ON

Project Manager: Meysam Jafari

MATRIX: WATER			S	ample Number	8
				Sample Name	BH 24-3
L1 = SANSEW / WATER / Toronto Sewer Use By Law - Sanita BL_100_2016	ry and Combined Sew	er Discharge -		Sample Matrix	Ground Water
L2 = SANSEW / WATER / Toronto Sewer Use By Law - Storm	Sewer Discharge - BL	_100_2016		Sample Date	05/03/2024
Parameter	Units	RL	L1	L2	Result
Metals and Inorganics (continued)					
Titanium (total)	mg/L	0.0001	5		0.0111
Zinc (total)	mg/L	0.002	2	0.04	0.002
Microbiology					
E. Coli	cfu/100mL	0		200	<2↑
Nonylphenol and Ethoxylates					
Nonylphenol	mg/L	0.001	0.02	0.001	< 0.001
Nonylphenol Ethoxylates	mg/L	0.01	0.2	0.01	< 0.01
Nonylphenol diethoxylate	mg/L	0.01			< 0.01
Nonylphenol monoethoxylate	mg/L	0.01			< 0.01
Oil and Grease					
Oil & Grease (total)	mg/L	2			< 2
Oil & Grease (animal/vegetable)	mg/L	4	150		< 4
Oil & Grease (mineral/synthetic)	mg/L	4	15		< 4

Client: DS Consultants

Project: 24-014-100, 1050 Markham Rd, Sc arborough ON

Project Manager: Meysam Jafari

MATRIX: WATER			s	ample Number	8
				Sample Name	BH 24-3
L1 = SANSEW / WATER / Toronto Sewer Use By Law - Sanita BL_100_2016	ary and Combined Sew	er Discharge -		Sample Matrix	Ground Water
L2 = SANSEW / WATER / Toronto Sewer Use By Law - Storm	n Sewer Discharge - BL	_100_2016		Sample Date	05/03/2024
Parameter	Units	RL	L1	L2	Result
Other (ORP)					
рН	No unit	0.05	11.5	9.5	7.19
Chromium VI	mg/L	0.0002	2	0.04	< 0.0002
Mercury (total)	mg/L	0.00001	0.01	0.0004	0.00001
PAHs					
Benzo(b+j)fluoranthene	mg/L	0.0001			< 0.0001
PCBs					
Polychlorinated Biphenyls (PCBs) - Total	mg/L	0.0001	0.001	0.0004	< 0.0001
Phenols					
4AAP-Phenolics	mg/L	0.002	1	0.008	0.003
SVOCs					
3,3-Dichlorobenzidine	mg/L	0.0005	0.002	0.0008	< 0.0005
di-n-Butyl Phthalate	mg/L	0.002	0.08	0.015	< 0.002
Bis(2-ethylhexyl)phthalate	mg/L	0.002	0.012	0.0088	< 0.002
Pentachlorophenol	mg/L	0.0005	0.005	0.002	< 0.0005
PAHs (Total)	mg/L		0.005	0.002	< 0.001
Perylene	mg/L	0.0005			< 0.0005

Client: DS Consultants

Project: 24-014-100, 1050 Markham Rd, Sc arborough ON

Project Manager: Meysam Jafari

MATRIX: WATER		Sample Number	8
		Sample Name	BH 24-3
1 = SANSEW / WATER / Toronto Sewer Use By Law - Sani 8L_100_2016	tary and Combined Sewer Discharge -	Sample Matrix	Ground Water
2 = SANSEW / WATER / Toronto Sewer Use By Law - Storr	n Sewer Discharge - BL_100_2016	Sample Date	05/03/2024
Parameter	Units RL	L1 L2	Result
SVOCs - PAHs			
7Hdibenzo(c,g)carbazole	mg/L 0.0001		< 0.0001
Anthracene	mg/L 0.0001		< 0.0001
Benzo(a)anthracene	mg/L 0.0001		< 0.0001
Benzo(a)pyrene	mg/L 0.0001		< 0.0001
Benzo[e]pyrene	mg/L 0.0001		< 0.0001
Benzo(ghi)perylene	mg/L 0.0002		< 0.0002
Benzo(k)fluoranthene	mg/L 0.0001		< 0.0001
Chrysene	mg/L 0.0001		< 0.0001
Dibenzo(a,h)anthracene	mg/L 0.0001		< 0.0001
Dibenzo(a,i)pyrene	mg/L 0.0001		< 0.0001
Dibenzo(a,j)acridine	mg/L 0.0001		< 0.0001
Fluoranthene	mg/L 0.0001		< 0.0001
Indeno(1,2,3-cd)pyrene	mg/L 0.0002		< 0.0002
Phenanthrene	mg/L 0.0001		< 0.0001
Pyrene	mg/L 0.0001		< 0.0001

Client: DS Consultants

Project: 24-014-100, 1050 Markham Rd, Sc arborough ON

Project Manager: Meysam Jafari

MATRIX: WATER			s	ample Number	8
				Sample Name	BH 24-3
L1 = SANSEW / WATER / Toronto Sewer Use By Law - Sani BL_100_2016	itary and Combined Sewer	Discharge -		Sample Matrix	Ground Water
2 = SANSEW / WATER / Toronto Sewer Use By Law - Stor	m Sewer Discharge - BL_1	00_2016		Sample Date	05/03/2024
Parameter	Units	RL	L1	L2	Result
VOCs					
Chloroform	mg/L	0.0005	0.04	0.002	< 0.0005
1,2-Dichlorobenzene	mg/L	0.0005	0.05	0.0056	< 0.0005
1,4-Dichlorobenzene	mg/L	0.0005	0.08	0.0068	< 0.0005
cis-1,2-Dichloroethylene	mg/L	0.0005	4	0.0056	< 0.0005
trans-1,3-Dichloropropene	mg/L	0.0005	0.14	0.0056	< 0.0005
Methylene Chloride	mg/L	0.0005	2	0.0052	< 0.0005
1,1,2,2-Tetrachloroethane	mg/L	0.0005	1.4	0.017	< 0.0005
Tetrachloroethylene (perchloroethylene)	mg/L	0.0005	1	0.0044	< 0.0005
Trichloroethylene	mg/L	0.0005	0.4	0.0076	< 0.0005
VOCs - BTEX					
Benzene	mg/L	0.0005	0.01	0.002	< 0.0005
Ethylbenzene	mg/L	0.0005	0.16	0.002	< 0.0005
Toluene	mg/L	0.0005	0.016	0.002	< 0.0005
Xylene (total)	mg/L	0.0005	1.4	0.0044	< 0.0005
m-p-xylene	mg/L	0.0005			< 0.0005
o-xylene	mg/L	0.0005			< 0.0005

EXCEEDANCE SUMMARY

					SANSEW / WATER	SANSEW / WATER
					/ Toronto Sewer	/ Toronto Sewer
					Use By Law -	Use By Law -
					Sanitary and	Storm Sewer
					Combined Sewer	Discharge -
					Discharge -	BL_100_2016
					BL_100_2016	
	Parameter	Method	Units	Result	L1	L2
BH	24-3					
	Total Suspended Solids	SM 2540D	mg/L	68		15
	Manganese	SM 3030/EPA 200.8	mg/L	0.233		0.05

Biochemical Oxygen Demand

Method: SM 5210 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	<i>l</i> latrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover	ry Limits	Spike	Recover	ry Limits
						(%)	Recovery	()	6)	Recovery	(9	6)
							(%)	Low	High	(%)	Low	High
Biochemical Oxygen Demand (BOD5)	BOD0013-MAR24	mg/L	2	< 2	16	30	103	70	130	93	70	130

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits	Spike	Recover	y Limits
						(%)	Recovery		6)	Recovery	(%	6)
						(10)	(%)	Low	High	(%)	Low	High
Cyanide (total)	SKA0051-MAR24	mg/L	0.01	<0.01	ND	10	93	90	110	85	75	125

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover	າງ Limits ຝ	Spike Recovery	Recover	y Limits
						(%)	Recovery (%)	Low	High	(%)	Low	High
Fluoride	EWL0103-MAR24	mg/L	0.06	<0.06	5	10	98	90	110	93	75	125

Hexavalent Chromium by SFA

Method: EPA218.6/EPA3060A | Internal ref.: ME-CA-[ENVISKA-LAK-AN-012

Parameter	QC batch	Units	RL	Method	Dup	Duplicate		LCS/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits 6)	Spike Recovery	Recover	y Limits 6)
						(%)	(%)	Low	High	(%)	Low	High
Chromium VI	SKA0063-MAR24	mg/L	0.0002	<0.0002	4	20	95	80	120	92	75	125

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-IENVISPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits	Spike	Recover	y Limits
						(%)	Becoven/	(9	6)	Recovery	(%)	
						(70)	(%)	Low	High	(%)	Low	High
Mercury (total)	EHG0012-MAR24	mg/L	0.00001	< 0.00001	ND	20	116	80	120	112	70	130

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	ıtrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover	y Limits)	Spike Recovery	Recover (%	y Limits စ်)
						(76)	(%)	Low	High	(%)	Low	High
Silver (total)	EMS0090-MAR24	mg/L	0.00005	<0.00005	ND	20	95	90	110	81	70	130
Aluminum (total)	EMS0090-MAR24	mg/L	0.001	<0.001	2	20	97	90	110	103	70	130
Arsenic (total)	EMS0090-MAR24	mg/L	0.0002	<0.0002	4	20	96	90	110	97	70	130
Cadmium (total)	EMS0090-MAR24	mg/L	0.000003	<0.00003	9	20	99	90	110	96	70	130
Cobalt (total)	EMS0090-MAR24	mg/L	0.000004	<0.000004	3	20	97	90	110	94	70	130
Chromium (total)	EMS0090-MAR24	mg/L	0.00008	<0.00008	3	20	99	90	110	97	70	130
Copper (total)	EMS0090-MAR24	mg/L	0.001	<0.001	3	20	98	90	110	83	70	130
Manganese (total)	EMS0090-MAR24	mg/L	0.00001	<0.00001	3	20	101	90	110	93	70	130
Molybdenum (total)	EMS0090-MAR24	mg/L	0.0004	<0.0004	4	20	95	90	110	98	70	130
Nickel (total)	EMS0090-MAR24	mg/L	0.0001	<0.0001	2	20	99	90	110	92	70	130
Lead (total)	EMS0090-MAR24	mg/L	0.00009	<0.00009	2	20	98	90	110	97	70	130
Phosphorus (total)	EMS0090-MAR24	mg/L	0.003	<0.003	11	20	99	90	110	NV	70	130
Antimony (total)	EMS0090-MAR24	mg/L	0.0009	<0.0009	ND	20	105	90	110	98	70	130
Selenium (total)	EMS0090-MAR24	mg/L	0.00004	<0.00004	2	20	100	90	110	98	70	130
Tin (total)	EMS0090-MAR24	mg/L	0.00006	<0.00006	ND	20	92	90	110	NV	70	130
Titanium (total)	EMS0090-MAR24	mg/L	0.0001	<0.0001	3	20	97	90	110	NV	70	130
Zinc (total)	EMS0090-MAR24	mg/L	0.002	<0.002	5	20	101	90	110	99	70	130

Microbiology

Method: SM 9222D | Internal ref.: ME-CA-[ENVIMIC-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dupl	icate	LC	S/Spike Blank		Ma	Matrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover	/ Limits)	Spike Recovery	Recovery (%	y Limits)
						(70)	(%)	Low	High	(%)	Low	High
E. Coli	BAC9081-MAR24	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							

Nonylphenol and Ethoxylates

Method: ASTM D7065-06 | Internal ref.: ME-CA-IENVIGC-LAK-AN-015

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recover	/ Limits)	Spike Recovery	Recovery (%	y Limits)
						(%)	(%)	Low	High	(%)	Low	High
Nonylphenol diethoxylate	GCM0066-MAR24	mg/L	0.01	<0.01			86	55	120			
Nonylphenol Ethoxylates	GCM0066-MAR24	mg/L	0.01	<0.01								
Nonylphenol monoethoxylate	GCM0066-MAR24	mg/L	0.01	<0.01			86	55	120			
Nonylphenol	GCM0066-MAR24	mg/L	0.001	<0.001			82	55	120			

Oil & Grease

Method: MOE E3401 | Internal ref.: ME-CA-[ENVIGC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	-CS/Spike Blank		м	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Oil & Grease (total)	GCM0086-MAR24	mg/L	2	<2	NSS	20	110	75	125			

Oil & Grease-AV/MS

Method: MOE E3401/SM 5520F | Internal ref.: ME-CA-IENVIGC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover (%	y Limits	Spike Recovery	Recover (%	y Limits
						(%)	(%)	Low	High	(%)	Low	High
Oil & Grease (animal/vegetable)	GCM0086-MAR24	mg/L	4	< 4	NSS	20	NA	70	130			
Oil & Grease (mineral/synthetic)	GCM0086-MAR24	mg/L	4	< 4	NSS	20	NA	70	130			

рΗ

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	CS/Spike Blank		м	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery	Recovery	/ Limits
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	EWL0107-MAR24	No unit	0.05	NA	0		100			NA		

Phenols by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover (%	y Limits	Spike Recovery	Recover	y Limits 6)
						(%)	(%)	Low	High	(%)	Low	High
4AAP-Phenolics	SKA0064-MAR24	mg/L	0.002	<0.002	7	10	106	80	120	98	75	125

Polychlorinated Biphenyls

Method: MOE E3400/EPA 8082A | Internal ref.: ME-CA-IENVIGC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		м	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike	Recover (%	y Limits	Spike Recovery	Recover (%	y Limits 6)
						(%)	(%)	Low	High	(%)	Low	High
Polychlorinated Biphenyls (PCBs) - Total	GCM0095-MAR24	mg/L	0.0001	<0.0001	NSS	30	99	60	140	NSS	60	140

Semi-Volatile Organics

Method: EPA 3510C/8270D | Internal ref.: ME-CA-[ENVIGC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike	Recover	ry Limits	Spike	Recover	y Limits
						(%)	Recovery	()	o)	(%)		o)
							(%)	Low	High	(,	Low	High
3,3-Dichlorobenzidine	GCM0083-MAR24	mg/L	0.0005	< 0.0005	NSS	30	88	30	130	NSS	30	130
7Hdibenzo(c,g)carbazole	GCM0084-MAR24	mg/L	0.0001	< 0.0001	NSS	30	109	50	140	NSS	50	140
Anthracene	GCM0084-MAR24	mg/L	0.0001	< 0.0001	NSS	30	98	50	140	NSS	50	140
Benzo(a)anthracene	GCM0084-MAR24	mg/L	0.0001	< 0.0001	NSS	30	100	50	140	NSS	50	140
Benzo(a)pyrene	GCM0084-MAR24	mg/L	0.0001	< 0.0001	NSS	30	93	50	140	NSS	50	140
Benzo(b+j)fluoranthene	GCM0084-MAR24	mg/L	0.0001	< 0.0001	NSS	30	109	50	140	NSS	50	140
Benzo[e]pyrene	GCM0084-MAR24	mg/L	0.0001	< 0.0001	NSS	30	102	50	140	NSS	50	140
Benzo(ghi)perylene	GCM0084-MAR24	mg/L	0.0002	< 0.0002	NSS	30	102	50	140	NSS	50	140
Benzo(k)fluoranthene	GCM0084-MAR24	mg/L	0.0001	< 0.0001	NSS	30	93	50	140	NSS	50	140
Bis(2-ethylhexyl)phthalate	GCM0084-MAR24	mg/L	0.002	< 0.002	NSS	30	105	50	140	NSS	50	140
Chrysene	GCM0084-MAR24	mg/L	0.0001	< 0.0001	NSS	30	98	50	140	NSS	50	140
di-n-Butyl Phthalate	GCM0084-MAR24	mg/L	0.002	< 0.002	NSS	30	112	50	140	NSS	50	140
Dibenzo(a,h)anthracene	GCM0084-MAR24	mg/L	0.0001	< 0.0001	NSS	30	102	50	140	NSS	50	140
Dibenzo(a,i)pyrene	GCM0084-MAR24	mg/L	0.0001	< 0.0001	NSS	30	94	50	140	NSS	50	140
Dibenzo(a,j)acridine	GCM0084-MAR24	mg/L	0.0001	< 0.0001	NSS	30	97	50	140	NSS	50	140
Fluoranthene	GCM0084-MAR24	mg/L	0.0001	< 0.0001	NSS	30	103	50	140	NSS	50	140
Indeno(1,2,3-cd)pyrene	GCM0084-MAR24	mg/L	0.0002	< 0.0002	NSS	30	105	50	140	NSS	50	140
Pentachlorophenol	GCM0084-MAR24	mg/L	0.0005	< 0.0005	NSS	30	106	50	140	NSS	50	140
Perylene	GCM0084-MAR24	mg/L	0.0005	< 0.0005	NSS	30	94	50	140	NSS	50	140
Phenanthrene	GCM0084-MAR24	mg/L	0.0001	< 0.0001	NSS	30	98	50	140	NSS	50	140

Semi-Volatile Organics (continued)

Method: EPA 3510C/8270D | Internal ref.: ME-CA-[ENVIGC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	atrix Spike / Ref.	:
	Reference			Blank	RPD	AC	Spike	Recove	ery Limits %)	Spike Recovery	Recover	ry Limits
						(%)	Recovery (%)	Low	High	(%)	Low	High
Pyrene	GCM0084-MAR24	mg/L	0.0001	< 0.0001	NSS	30	101	50	140	NSS	50	140

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-IENVIEWL-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover	y Limits	Spike Recovery	Recover	y Limits
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Suspended Solids	EWL0089-MAR24	mg/L	2	< 2	0	10	102	90	110	NA		

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-IENVISFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Ref.	•]
	Reference			Blank	RPD	AC	Snike	Recover	y Limits	Spike	Recover	y Limits
						(%)	Recovery	(%	6)	Recovery	(%	6)
						(,0)	(%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen	SKA0057-MAR24	as N mg/L	0.5	<0.5	1	10	103	90	110	93	75	125

Volatile Organics

Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ма	trix Spike / Ref	
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover (%	y Limits 6)	Spike Recovery	Recover (9	y Limits 6)
							(%)	Low	High	(%)	Low	High
1,1,2,2-Tetrachloroethane	GCM0057-MAR24	mg/L	0.0005	<0.0005	ND	30	92	60	130	104	50	140
1,2-Dichlorobenzene	GCM0057-MAR24	mg/L	0.0005	<0.0005	ND	30	93	60	130	94	50	140
1,4-Dichlorobenzene	GCM0057-MAR24	mg/L	0.0005	<0.0005	ND	30	95	60	130	93	50	140
Benzene	GCM0057-MAR24	mg/L	0.0005	<0.0005	ND	30	96	60	130	96	50	140
Chloroform	GCM0057-MAR24	mg/L	0.0005	<0.0005	ND	30	94	60	130	95	50	140
cis-1,2-Dichloroethylene	GCM0057-MAR24	mg/L	0.0005	<0.0005	ND	30	94	60	130	96	50	140
Ethylbenzene	GCM0057-MAR24	mg/L	0.0005	<0.0005	ND	30	95	60	130	96	50	140
m-p-xylene	GCM0057-MAR24	mg/L	0.0005	<0.0005	ND	30	95	60	130	96	50	140
Methylene Chloride	GCM0057-MAR24	mg/L	0.0005	<0.0005	ND	30	109	60	130	74	50	140
o-xylene	GCM0057-MAR24	mg/L	0.0005	<0.0005	ND	30	96	60	130	94	50	140
Tetrachloroethylene	GCM0057-MAR24	mg/L	0.0005	<0.0005	ND	30	93	60	130	94	50	140
(perchloroethylene)												
Toluene	GCM0057-MAR24	mg/L	0.0005	<0.0005	ND	30	94	60	130	96	50	140
trans-1,3-Dichloropropene	GCM0057-MAR24	mg/L	0.0005	<0.0005	ND	30	90	60	130	91	50	140
Trichloroethylene	GCM0057-MAR24	mg/L	0.0005	<0.0005	ND	30	91	60	130	90	50	140

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- ↑ Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

	- London: 657 Cons	ortium Court, l	ondon, ON, I	N6E 2S8 Phon	ne: 519	-672-45	00 Toll	Free: 87	7-848-8	3060 F	ax: 519	-672-0	361	A Star		and and the					- Charles		Page of
Almeel			· · · ·	Labo	rator	y Info	matic	on Sec	tion -	Lab	use o	nly											
ceived By: (mm/dd/)	/v)	Custody Seal	(signature): _ Present: Ye		15	Y'-	Coolir	ng Agent	Preser	nt: Ye	s	No [7 -	Гуре:	TC	Ē							
ceived Time:	" A Part	Custody Seal	Intact: Ye		5		Temp	erature l	Jpon R	eceipt	(°C)		7	x S	*	a and				LAB	LIMS #:	GAL	-P K01
REPORT INFORMATION	IN	VOICE INFO	RMATION										' (~									marzy
ompany: DS Consultants Ltd.	(same as R	eport Informa	ation)		Quo	tation #	:	100				Terri -		Magnet S		F	P.O. #:			1251	0 (8	1 1	1 0 PL
ntact: Meysoron Jarlan	Company:	<u></u>			Proj	ect #:	26	1-0	14.	-10	20					5	Site Lo	cation/	ID: 1	1000	ren her	I CITIL	horal Mar,
dress: 6721 - Henry 7, Wast-10,	Contact:	country	9					TAT //	7.1				П	JRNAR	OUND	TIME (TAT	's are o	QUIREL) 1 busine	ess dav	s (exclud	le statuto	J VI WIY
Vaughon on	Address:					LAR R	egular	IAI (5	-/days	5)						San	nples re	eceived	after 6p	m or on	weeken	ds: TAT I	begins next business d
one: <u>64 + - 831-3396</u>	NA STR		<u></u>		RUS	H TAT	(Addit	ional (harge	s Ma	y Appl	у): ты с				2 Days			4 Day	S			
X:	Phone:				I LL	AGE C	Dete	WI KUS		(SIDIL			*NOT	EFRES	KING	(POTABLE)	WATER	R SAMP	LES FO	RHUM	IAN CON	SUMPT	ION MUST BE SUBMI
iail: Martan @ dsconsultant	Email:				Spe		Date:				•		VC	0.0	-	WITH	SGS D	RINKIN	G WATE	ER CHA	IN OF C	USTOD	(
	DLATIONS	41	10	- Dud		64	21		SV/		A	NAL	LYS	IS RI		ESIED	Othe					TOUT	
O.Reg 153/04 O.Reg 406/19 Table 1 Res/Park Soil Texture:	Reg 347/558	tions: 3 (3 Day min T.	AT) LP	Sanitary		1/1			370		FUB		10			est		pleas	e specify	//	SPLP	TCLP	
Table 2 Ind/Com Coarse		MMER	I I	Storm												(A)					Specify tests	Specify tests	and the second
Table 3 Agri/Other Medium/Fine		Other:	Mur	nicipality:		(1)	Ser.	a,B,Cd,			clor					Prutt.		ing a		6			Contraction of
Table Appx. Soil Volume <350m3		Reportable *Se		1 10 1 1110		SS SAR-so	lg, CrV	s,Ba,B			Arc					150				L PK			Contraction of the second
RECORD OF SITE CONDITION (RSC)	YES	NO	I			anio s),EC,	ite only) F	Sb,A U,V,Zn								other Set				catio	voc	Voc	COMMENT
				a and and a	P	B(HW)	Sui VS-soil	only e,Ag,TI		CPs	otal	X	3.0.00			5 th	•			Exter	1,4- Dioxane	РСВ	
	DATE	TIME	# OF	S. Antal	tere	Hq pH.(tals s B(HV	als. Mo,Ni,S	yln	ABNS, C	Ĕ	BT	<u>ک</u> ار		N N	CP CP			::	arac	DOCP	B(a)P	C. S. Start
SAMPLE IDENTIFICATION	SAMPLED	SAMPLED	BOTTLES	MATRIX	III D	als.	Met tals plu	Met u,Pb,N	IS OI	CS PAHs, P	S	+ +:	A or	BTEX	X on	chlorin Cyve			r Us	- Ch	ABN	ABN	San States
	and the second	1. 1. 1.		1.000	Tield	Met	EP me	CP Cr,Co,C	AF	SVO Il inci F	CB	1-1-	-1-F	N III	C I L	Lev Lev			ewe	Nate		Ignit.	1222
BH 24-3	315174	Pm	19	GLI	N		1					_				V		0	0,0	1-0	1.00		Nen filles
								1.20											1		1		sconpp
				(*)										Sala B			1945 1947 (19						
		<u>na dia 1976</u> Managana dia mangkana dia mangkan Managana dia mangkana		A CONTRACTOR														<u>10</u> 0			i na la "c		
																				1			
							122	1											-		-		
		1 14- 1					1										Carl & L						
	and the second se	1			•						Self-self-			1			62			10.00			in the second
			the second	New York																	and the		
	A State of the second second	1								k	15												
											1.1.1												
		Strates.	Sale Sta								1.4.					•						115	
	and the state		and the second																				
ervations/Comments/Special Instructions		Aller Marth				19.94													1		All all		
pled By (NAME):			Signature	đ	~				1						10.12	3 01		2.6					
Way torn get			eignature.	- Of		1.1.1		1.1.1.1.1	<u></u>			12902	1913	08	ale: 7			1	(1	mm/dd/	уу)	10 (NY) 19	Pink Copy - Client

Appendix D

MECP Water Well Record Search (500 m) - 1050 Markham Road, Toro	nto
---	-----

TOWNSHIP	UTM	Е	N	DATE CNTR	CASING	WATER	PUMP TEST	WELL USE	SCREEN	WELL	WELL TAG	FORMATION
SCARBOROUGH BOROUGH	17 W	642305	4848755	2017-11 7215	2			МО	0012 10	7301165	(Z274523) A238217	SAND GRVL 0001 BRWN SAND SILT 0018 GREY SAND SILT 0022
SCARBOROUGH BOROUGH	17 W	642272	4848770	2017-11 7215	2			МО	0008 10	7301162	(Z274527) A238217	SAND GRVL FILL 0001 BRWN SAND SILT 0014 GREY SAND SILT 0018
SCARBOROUGH BOROUGH	17 W	642441	4848420	2016-06 6926						7269774	(C34869) A190501 P	
SCARBOROUGH BOROUGH	17 W	642448	4848348	2015-08 6032	1.79			МО	0005 10	7248146	(Z194290) A181484	BRWN FILL PCKD 0005 BRWN SILT GRVL SAND 0015
SCARBOROUGH BOROUGH	17 W	642250	4848517	2005-08 6607		9		NU		6929345	(Z34959) A005019 A	22
SCARBOROUGH BOROUGH	17 W	642121	4848712	2014-01 7241	2			МТ	0013 10	7216178	(Z184650) A159277	BLCK 0000 BRWN FILL SILT 0010 BRWN SILT SNDY 0016 GREY SILT SNDY 0023
SCARBOROUGH BOROUGH	17 W	642424	4848294	2019-09 7147	1.25			мо	0004 5	7343996	(4NPZOB7Q) A269800	GREY 0001 BRWN 0009
SCARBOROUGH BOROUGH	17 W	642350	4848560	2011-11 7383						7175864	(M07868) A099216 P	
SCARBOROUGH BOROUGH	17 W	642350	4848560	2011-06 7383						7166359	(M07850) A099216 P	
SCARBOROUGH BOROUGH	17 W	642387	4848479	2009-11 7215				ТН	0010 10	7135571	(Z104627) A049088	BRWN FILL 0006 BRWN CLAY DRY 0012 GREY TILL SLTY WBRG 0016 GREY CLAY SLTY 0020
SCARBOROUGH BOROUGH	17 W	642339	4848327	2008-10 6607						7125146	(M03963) A074944 A	
SCARBOROUGH BOROUGH	17 W	641956	4848632	2008-11 7215						7117903	(Z93481) A	
SCARBOROUGH BOROUGH	17 W	642371	4848510	2005-09 7075	1.76	FR 0016			0010 13	6929396	(Z32448) A027089	BRWN SAND SILT FILL 0004 BRWN CLAY SILT CLAY 0010 GREY CLAY SILT TILL 0023
SCARBOROUGH BOROUGH	17 W	642394	4848305	2019-08 6032						7356112	(C44558) A102034 P	
SCARBOROUGH BOROUGH	17 W	642467	4848345	2021-08 6926						7412419	(C55109) A310634 P	
SCARBOROUGH BOROUGH	17 W	642367	4848552	2021-11 7644						7409810	(Z377339) A340505 P	
SCARBOROUGH BOROUGH	17 W	642368	4848557	2021-11 7644						7409809	(Z377336) A330486 P	
SCARBOROUGH BOROUGH	17 W	642374	4848533	2021-12 7644						7409808	(Z377332) A340506 P	
SCARBOROUGH BOROUGH	17 W	642338	4848516	2021-12 7644						7409807	(Z377335) A340503 P	
SCARBOROUGH BOROUGH	17 W	642334	4848539	2021-12 7644						7409806	(Z377334) A340490 P	
SCARBOROUGH BOROUGH	17 W	642389	4848346	2020-11 6926						7397615	(C51157) A310634 P	
SCARBOROUGH BOROUGH	17 W	642423	4848543	2019-04 7147	1.97	UT 0020		МО	0013 10	7333114	(HL93ZDHJ) A266387	BLCK 0001 BRWN SILT SAND 0023
SCARBOROUGH BOROUGH	17 W	642278	4848743	2019-11 6988						7356338	(C45787) A276614 P	
SCARBOROUGH BOROUGH	17 W	642436	4848298	2019-09 7147	1.25			МО	0007 5	7343995	(VRHJF8IO) A269799	GREY 0001 BRWN 0012
SCARBOROUGH BOROUGH	17 W	642376	4848779	2019-11 7230	2.04	UT 0021		МТ	0049 10	7349817	(Z319660) A277471	BRWN FILL DNSE 0003 BRWN SILT TILL SNDY 0020 BRWN SAND GRVL HARD 0035 BRWN SAND TILL BLDR 0040 BRWN MSND HARD 0045 BRWN SAND TILL HARD 0059
SCARBOROUGH BOROUGH	17 W	642261	4848524	2019-08 7241	2			МТ	0008 10	7344957	(Z323403) A267998	BLCK 0000 BRWN FILL 0003 BRWN CLAY SILT 0010 GREY CLAY SILT 0018

SCARBOROUGH BOROUGH	17 W	642273	4848492	2019-08 7241	2		МТ	0009 10	7344956	(Z323401)	BLCK 0000 BRWN FILL 0003 BRWN CLAY SILT 0010
										A267997	GREY CLAY SILT 0019
SCARBOROUGH BOROUGH	17 W	642300	4848475	2019-08 7241	2		МТ	0013 10	7344955	(Z323402)	BLCK 0000 BRWN FILL 0003 BRWN CLAY SILT 0010
										A267996	GREY CLAY SILT 0023
SCARBOROUGH BOROUGH	17 W	642281	4848474	2019-08 7241	2		МО	0015 10	7344776	(Z319153)	0010 BRWN SAND SILT 0014 GREY SILT CLAY WBRG
										A270810	0025
SCARBOROUGH BOROUGH	17 W	642270	4848465	2019-08 7241	2		MO	0010 10	7344775	(Z319154)	
										A270811	0010 BRWN SILI SAND 0015 GREI SILI CLAI 0020
SCARBOROUGH BOROUGH	17 W	642392	4848523	2020-12 7725					7377493	(C49828)	
										A297037 P	